My Blog

pi제어 예제

by kai on 2. August 2019 , No comments

센서는 낮은 온도를 집어 들고 컨트롤러에 다시 공급하며 컨트롤러는 PV (온도)가 떨어지고 에어컨이 약간 거절되어 „온도 오류“가 크지 않다고 봅니다. 위치(PV)를 측정하고, 이를 설정점(SP)에서 빼면, 오차(e)가 발견되고, 이로부터 제어기는 모터(MV)에 공급할 전류의 양을 계산한다. 컨트롤러의 정수 모드는 방정식의 마지막 용어입니다. 그 기능은 시간이 지남에 따라 컨트롤러 오류 e(t)를 통합하거나 지속적으로 합산하는 것입니다. 전체 제어 함수는 수학적으로 등가적으로 표현될 수 있으며, PID 제어기의 Laplace 도메인에서의 전달 함수는 프로세스 변수가 설정점 아래에 있는 한, 제어 출력이 더 높은 값으로 설정된다. 설정점 위로 올라가자마자 컨트롤 출력이 더 낮은 값으로 설정됩니다. 이상적으로, 출력 파형은 거의 정사각형이며, 설정점 위와 아래에서 동등한 시간을 소비합니다. 결과 진동의 기간과 진폭을 측정하고 궁극적 인 게인과 기간을 계산하는 데 사용되며, 이는 지글러 – 니콜스 방법으로 공급됩니다. 이 컨트롤러 예제에서는 밝기의 표현으로 전압을 사용합니다.

전압 분배기 구성으로 인해 Arduino의 입력 핀에서 읽는 전압은 포토셀에서 감지한 밝기에 비례하여 달라집니다. 비례 및 적분 액션을 함께 넣으면 겸손한 PI 컨트롤러를 얻을 수 있습니다. 아래 다이어그램은 PI 컨트롤러의 알고리즘이 계산되는 방법을 보여줍니다. 바람이 많이 부는 날 고속도로에서 차선을 바꾸는 비유를 사용할 것입니다. 우리는 운전자이며, 따라서 자동차의 위치를 변경하는 과정의 컨트롤러입니다. e(t)가 증가하거나 축소됨에 따라 CObias에 추가된 양은 즉각적이고 비례적으로 증가하거나 축소됩니다. 컨트롤러 오류의 과거 기록 및 현재 궤적은 비례 계산에 영향을 미치지 않습니다. 따라서 PV가 처음 t = 32 주위에서 설정점을 교차하면 정수 합계가 약 135로 증가했습니다. PI 컨트롤러의 필수 용어를 다음과 같이 작성합니다. PID 제어기의 또 다른 표현은 계열, 또는 상호 작용 형태 대부분의 상용 제어 시스템은 또한 공정 변수에 전적으로 비례 동작을 기초로 하는 옵션을 제공한다. 즉, 정수 작업만 설정점의 변경 사항에 응답합니다.

알고리즘을 수정해도 컨트롤러가 프로세스 장애에 응답하는 방식에는 영향을 주지 않습니다. PV에 비례적인 동작을 기반으로 설정점에 갑자기 변경으로 인한 출력의 즉각적이고 큰 변화를 제거합니다. 프로세스 및 튜닝에 따라 설정점 단계에 대한 응답에 도움이 될 수 있습니다. 적분 항은 설정점을 향한 프로세스의 이동을 가속화하고 순수 비례 컨트롤러에서 발생하는 잔류 정상 상태 오류를 제거합니다. 그러나 정수 용어는 과거의 누적된 오류에 응답하므로 현재 값이 설정점 값을 오버슈트할 수 있습니다(루프 튜닝섹션 참조). 그런 다음 장애가 시스템에 부딪히고 컨트롤러가 다시 시작됩니다. 좋아, 그래서 P와 I 액션의 조합은 모든 기지를 커버하고 우리의 시스템을 제어하는 꽤 좋은 일을 하는 것 같다. 이것이 PI 컨트롤러가 가장 널리 사용되는 이유입니다. 그들은 충분히 일을 잘하고 일을 간단하게 유지합니다. 좋은. PI 제어에 대한 일반적인 튜닝 상관 관계는 ITAE(시간 가중 절대 오차의 적분) 메서드와 IMC(내부 모델 제어)입니다. IMC는 시간 지연을 고려하여 람다 튜닝의 확장입니다.

kaipi제어 예제